Odds Conversion Chart

Fundamental to assessing value in any betting event is understanding the implied probability that is reflected in the given odds. Essentially you want to bet odds that have a lower implied probability than your own personal assessed probability of that particular result occurring.

For example, let's say that West Coast are 1.60 to win at home against Collingwood in the AFL. The implied probability in such odds is roughly 62.5%. But you've assessed that West Coast are a 70% chance of winning the match, meaning that they should be odds of 1.42. If you've done your homework right and your assessment is accurate, you've found a value bet.

Thinking in these terms, having it almost become second nature is truly key to long-term betting success. If you want to understand the nature of value, you first have to start thinking in terms of probability.

If want to know how to do it yourself, read this article on how to covert odds.

Implied Probability %Decimal OddsFractional OddsAmerican Odds
99.0 1.01 1-100 -10000
98.0 1.02 1-50 -5000
97.1 1.03 1-33 -3333
96.2 1.04 1-25 -2500
95.2 1.05 1-20 -2000
94.3 1.06 3-50 -1667
93.5 1.07 7-100 -1429
92.6 1.08 2-25 -1250
91.7 1.09 9-100 -1111
90.9 1.10 1-10 -1000
90.1 1.11 11-100 -909
89.3 1.12 3-25 -833
88.5 1.13 13-100 -769
87.7 1.14 7-50 -714
87.0 1.15 3-20 -667
86.2 1.16 4-25 -625
85.5 1.17 17-100 -588
84.7 1.18 9-50 -556
84.0 1.19 19-100 -526
83.3 1.20 1-5 -500
82.6 1.21 21-100 -476
82.0 1.22 11-50 -455
81.3 1.23 23-100 -435
80.6 1.24 6-25 -417
80.0 1.25 1-4 -400
79.4 1.26 13-50 -385
78.7 1.27 27-100 -370
78.1 1.28 7-25 -357
77.5 1.29 29-100 -345
76.9 1.30 3-10 -333
76.3 1.31 31-100 -323
75.8 1.32 8-25 -313
75.2 1.33 33-100 -303
74.6 1.34 17-50 -294
74.1 1.35 7-20 -286
73.5 1.36 9-25 -278
73.0 1.37 37-100 -270
72.5 1.38 19-50 -263
71.9 1.39 39-100 -256
71.4 1.40 2-5 -250
70.9 1.41 41-100 -244
70.4 1.42 21-50 -238
69.9 1.43 43-100 -233
69.4 1.44 11-25 -227
69.0 1.45 9-20 -222
68.5 1.46 23-50 -217
68.0 1.47 47-100 -213
67.6 1.48 12-25 -208
67.1 1.49 49-100 -204
66.7 1.50 1-2 -200
65.8 1.52 13-25 -192
64.9 1.54 27-50 -185
64.1 1.56 14-25 -179
63.3 1.58 29-50 -172
62.5 1.60 3-5 -167
61.7 1.62 31-50 -161
61.0 1.64 16-25 -156
60.2 1.66 33-50 -152
59.5 1.68 17-25 -147
58.8 1.70 7-10 -143
58.1 1.72 18-25 -139
57.5 1.74 37-50 -135
56.8 1.76 19-25 -132
56.2 1.78 39-50 -128
55.6 1.80 4-5 -125
54.9 1.82 41-50 -122
54.3 1.84 21-25 -119
53.8 1.86 43-50 -116
53.2 1.88 22-25 -114
52.6 1.90 9-10 -111
52.1 1.92 23-25 -109
51.5 1.94 47-50 -106
51.0 1.96 24-25 -104
50.5 1.98 49-50 -102
50.0 2.00 Evens 100
49.5 2.02 51-50 102
49.0 2.04 26-25 104
48.5 2.06 53-50 106
48.1 2.08 27-25 108
47.6 2.10 11-10 110
46.5 2.15 23-20 115
45.5 2.20 6-5 120
44.4 2.25 5-4 125
43.5 2.30 13-10 130
42.6 2.35 27-20 135
41.7 2.40 14-10 140
40.8 2.45 29-20 145
40.0 2.50 3-2 150
38.5 2.60 8-5 160
37.0 2.70 17-10 170
35.7 2.80 9-5 180
34.5 2.90 19-10 190
33.3 3.00 2-1 200
31.3 3.20 11-5 220
29.4 3.40 12-5 240
27.8 3.60 13-5 260
26.3 3.80 14-5 280
25.0 4.00 3-1 300
23.8 4.20 16-5 320
22.7 4.40 17-5 340
21.7 4.60 18-5 360
20.8 4.80 19-5 380
20.0 5.00 4-1 400
19.2 5.20 21-5 420
18.5 5.40 22-5 440
17.9 5.60 23-5 460
17.2 5.80 24-5 480
16.7 6.00 5-1 500
16.1 6.20 26-5 520
15.6 6.40 27-5 540
15.2 6.60 28-5 560
14.7 6.80 29-5 580
14.3 7.00 6-1 600
13.3 7.50 13-2 650
12.5 8.00 7-1 700
11.1 9.00 8-1 800
10.0 10.00 9-1 900
9.1 11.00 10-1 1000
8.3 12.00 11-1 1100
7.7 13.00 12-1 1200
7.1 14.00 13-1 1300
6.7 15.00 14-1 1400
5.0 20.00 19-1 1900
3.3 30.00 29-1 2900
2.5 40.00 39-1 3900
2.0 50.00 49-1 4900
1.0 100.00 99-1 9900
0.7 150.00 149-1 14900
0.5 200.00 199-1 19900